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Summary
Objective: Prolonged electroencephalographic (EEG) monitoring in chronic epilepsy 
rodent models has become an important tool in preclinical drug development of new 
therapies, in particular those for antiepileptogenesis, disease modification, and 
treating drug- resistant epilepsy. We have developed an easy- to- use, reliable, 
computational tool for automated detection of electrographic seizures from prolonged 
EEG recordings in rodent models of epilepsy.
Methods: We applied a novel method based on advanced time- frequency analysis 
that detects EEG episodes with excessive activity in certain frequency bands. The 
method uses an innovative technique of short- term spectral analysis, the Similar 
Basis Function algorithm. The method was applied for offline seizure detection from 
long- term EEG recordings from four spontaneously seizing, chronic epilepsy rat 
models: the fluid percussion injury (n = 5 rats, n = 49 seizures) and post–status 
epilepticus models (n = 119 rats, n = 993 seizures) of acquired epilepsy, and two 
genetic models of absence epilepsy, Genetic Absence Epilepsy Rats from Strasbourg 
and Wistar Albino Glaxo from Rijswijk (n = 41 and 14 rats, n = 8733 and 825 
seizures, respectively).
Results: Our comparative analysis revealed that the EEG amplitude spectra of these 
four rat models are remarkably similar during epileptiform activity and have a single 
expressed peak within the 17-  to 25- Hz frequency range. Focusing on this band, our 
computer program detected all seizures in the 179 rats. A quick semiautomated user 
inspection of the EEGs for the period of each identified event allowed quick rejection 
of artifact events. The overall processing time for 12- day- long recordings varied 
from a few minutes (5- 10) to 30 minutes, depending on the number of artifact events, 
which was strongly correlated with the signal quality of the raw EEG data.
Significance: Our automated seizure detection tool provides high sensitivity, with 
acceptable specificity, for long-  and short- term EEG recordings from both acquired 
and genetic chronic epilepsy rat models. This tool has the potential to improve the 
efficiency and rigor of preclinical research and therapy development using these 
models.
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1 |  INTRODUCTION

Epilepsy affects 50 million people worldwide (World Health 
Organization, 2006), and poses a significant burden on the 
quality of life of affected individuals and their families. Since 
the discovery of bromide as the first antiseizure drug, there 
has been an impressive expansion of clinically effective ther-
apies that decrease the frequency and severity of seizures in 
people with epilepsy. The newer antiseizure drugs have been 
identified through systematic screening in batteries of an in-
creasing number of in vivo and in vitro seizure and epilepsy 
models.1

However, the focus of translational research and drug 
development for the epilepsies has now shifted from the 
development of more antiseizure drugs to the develop-
ment of antiepileptogenic and disease- modifying therapies. 
Prolonged electroencephalographic (EEG) recordings in 
chronic epilepsy models are a critical part of the drug devel-
opment testing paradigm for these therapies.2–6 For this, an 
efficient and accurate measure of quantitating the occurrence 
of spontaneous seizures is critical.3,7

For the study of acquired epilepsy, the two most common 
used models are the post–status epilepticus (SE) model6 and 
the traumatic brain injury–induced posttraumatic epilepsy 
(PTE) models.8 Conversely, Genetic Absence Epilepsy Rats 
from Strasbourg (GAERS) and Wistar Albino Glaxo from 
Rijswijk (WAG/Rij) are the most widely used models to 
study genetic generalized epilepsy with absence seizures.4,5 
Prolonged EEG monitoring is necessary to phenotype the 
occurrence of spontaneous seizures in different animal mod-
els and to evaluate the acute and chronic effects of the novel 
interventions.9 Studies utilizing EEG typically involve com-
parison of measurements obtained from different experimen-
tal groups or from the same experimental group at different 
times. Given the heterogeneity of epilepsy and, in some cases, 
the low frequency of spontaneously occurring seizures, to 
appropriately power antiepileptogenesis and disease modi-
fication studies, it is mandatory to have a large number of 
animals per cohort as well as multiple and prolonged periods 
of recording to establish whether the experimental treatments 
are successful in preventing or modifying the progression of 
epilepsy.2,3,7,9

Therefore, it is critical to quantify the presence and num-
ber of seizures in preclinical studies. Although EEG sei-
zures can be relatively easy to recognize during expert visual 

inspection of the EEG, the overall process to analyze EEG re-
cordings is very time- consuming. Moreover, it requires a sig-
nificant amount of time to train a new EEG reviewer, and the 
manual analysis is prone to errors mostly related to fatigue 
and eyestrain. Thus, an automatic seizure detection method 
would greatly increase the throughput and would help to 
standardize and increase the reproducibility of the analysis in 
large- scale preclinical trials.

Here, we report a user- friendly, easy- to- use, reliable, 
computational tool for detection of EEG seizures from pro-
longed EEG recordings in rodent models of epilepsy, and val-
idate this in prolonged EEG recordings from four rat models 
of chronic epilepsy, two acquired and two genetic. The tool 
is based on a novel signature in the 17-  to 25- Hz frequency 
band of the EEG that is specific to detect all of the EEG sei-
zures in these four rodent models.

2 |  MATERIALS AND METHODS

2.1 | Animals
Eleven- week- old male Wistar rats were used for the post- SE 
and PTE models of acquired epilepsy (at the time of appli-
cation of the epileptogenic insult). Twenty- four- week- old 
male GAERS and WAG/Rij rats were used in the experi-
ments. All procedures were approved by the Florey Animal 
Ethics Committee (ethics number 14- 072 UM). The animals 
were individually housed with alternating 12- hour light and 
dark cycles. Food and water were provided ad libitum for the 
whole duration of the study.

K E Y W O R D S
automated seizure detection, genetic absence epilepsy rats from Strasbourg, post–status epilepticus 
model, posttraumatic epilepsy, traumatic brain injury, Wistar Albino Glaxo from Rijswijk

Key Points
• The “Assyst” novel and versatile algorithm de-

tected 100% of 10 600 seizures, which represents 
>76 000 hours of EEG recordings

• We discovered a frequency band of 17-25 Hz that 
is specific to detect all of the seizures in the post-
SE, post-TBI, GAERS, and WAG/Rij rodent 
models of acquired and genetic epilepsy

• Processing and reviewing 24 hours of EEG re-
cordings took an average of 1 minute per 24 hours 
of EEG recordings, which represents saving 90%-
98% of the time it takes to review preclinical EEG
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2.2 | Kainic acid–induced post- SE model of 
acquired epilepsy
A repeated low- dose kainic acid (KA) administration proto-
col was used as previously described.10 Rats were injected 
intraperitoneally (i.p.) with an initial dose of KA 7.5 mg/
kg. Animals were monitored for behavioral seizures based 
on the Racine scale.11,12 If no self- sustained seizure activ-
ity was observed with at least five class IV- V seizures per 
Racine, another i.p. dose of 2.5 mg/kg of KA was adminis-
tered up to a maximum of 15 mg/kg. An animal was elimi-
nated from the experiment if it did not show a self- sustained 
SE after a maximum KA dose. SE was stopped after 4 hours 
with diazepam (5 mg/kg/dose). After recovery, the animals 
were returned to their home cages in the animal house and 
kept in routine housing conditions until they were implanted 
with EEG electrodes for the prolonged EEG recordings (as 
described below).

2.3 | Induction of PTE
Wistar rats received a lateral fluid percussion injury (FPI) as 
previously described.8,13 Briefly, with the animal under anes-
thesia, a 5- mm craniotomy positioned 4 mm right lateral and 
4 mm posterior to bregma was performed to create a circular 
window exposing the intact dura mater of the brain. A modi-
fied female Luer- Lock cap was secured over the craniotomy 
window by dental acrylic. A severe intensity (320- 350 kPa) 
fluid pulse of silicone oil generated by the fluid percussion 
device was delivered to the brain. On resumption of sponta-
neous breathing, and return to pre- FPI levels of heart rate and 
oxygenation status, the dental acrylic caps were removed and 
the wound was sutured closed. This injury results in PTE in 
30%- 50% of rats at 6 months.8,13–16 After recovery, the ani-
mals were returned to their home cages in the animal house 
and kept in routine housing conditions until they were im-
planted with EEG electrodes for the prolonged EEG record-
ings (as described below).

2.4 | EEG electrode implantation surgery
Surgery was performed 6 weeks after SE or FPI, or at 
6 months of age for the GAERS and WAG/Rij, as previously 
described.17 Briefly, animals were anesthetized with isoflu-
rane. Six burr holes were drilled through the skull without 
penetrating the dura, one on each side anterior to the bregma, 
two to each side anterior to lambda, and two to each side 
in the parietal bones. Ground and reference electrodes were 
placed in the occipital bone. Stainless steel subdural screw 
recording electrodes (Plastics One) were screwed into each 
hole. The recording electrodes were fixed in position by ap-
plying Vertex dental cement around the electrodes and over 
the skull.

2.5 | EEG recordings
EEG was acquired using Profusion 5 software (Compumedics) 
unfiltered and digitized at 512 Hz using a tethered EEG cable 
system with the rats freely moving in their home cages. EEG 
recordings were acquired for 2- 4 weeks continuously in the 
post- SE and FPI rats, whereas GAERS and WAG/Rij had 
48 hours of continuous EEG recordings. Only animals that 
presented with EEG seizures on the EEG were selected for 
the study. A referential montage was used.

2.6 | Manual seizure analysis
EEG analysis was performed in a blinded manner and con-
firmed by two different expert observers. All EEG record-
ings were visually and manually annotated using Profusion 5 
software. For the post- SE and PTE animals, an EEG seizure 
was defined as an episode of rhythmic spiking activity that 
was three times the baseline amplitude with a frequency > 
5 Hz lasting at least 10 seconds. The end of a seizure was 
determined as the last spike.16,18,19

For GAERS and WAG/Rij, an EEG seizure was defined as 
spike and wave discharge (SWD) of amplitude of more than 
three times baseline, a frequency of 7- 12 Hz, and duration of 
>0.5 seconds.4,5,20,21 The start and end of each seizure was 
determined by manually marking the beginning and end of 
each SWD on the EEG. For all of the animals, the total num-
ber of seizures was quantified.

2.7 | Automated seizure analysis
We developed a novel software tool, “Assyst,” written in Delphi 
(dialect of Object Pascal, Embarcadero Technologies), that 
is intended to significantly facilitate the detection of electro-
graphic seizures in prolonged EEG recordings in rodent mod-
els of epilepsy. The seizure detection method implemented in 
Assyst and presented here utilizes an advanced time- frequency 
analysis of the signal from a single or multiple EEG channels 
to reveal the EEG segments with excessive activity in a certain 
frequency band. We assessed the spectral content of the EEG 
within a given frequency band using a measure we refer to as 
spectral band index (SBI), which we calculate over time using a 
predetermined running time window.

The main steps of the algorithm are presented in Figure 1. 
The algorithm consists of main (shaded blocks) and optional 
(white blocks) steps. The proposed algorithm is interactive; 
some operations are automatically performed by the com-
puter, others require user input.

2.8 | Input data
EEG recordings are exported unfiltered into European data 
format (.edf) files and then are loaded to the Assyst software. 
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There are no restrictions on the duration of the EEG record-
ings, data size, or number of channels to be analyzed.

2.9 | Time- frequency analysis—
calculation of SBI
This step is intended to reveal the temporal dynamics of a par-
ticular frequency component of the EEG. To achieve this, we 
define the frequency range of interest, (frequency band), de-
fine the length of EEG segments (time window) that will be 
used to calculate the power spectrum of the EEG, and move 
this window along the EEG with certain time step. For each 
window position (Figure 2), the power spectrum of the EEG 
segment is calculated within the defined frequency range using 
a modification of our Similar Basis Function (SBF) algorithm 
for Fourier Transform.22 The maximum value of the power 
spectrum in this frequency range is found, and this parame-
ter—the SBI—is used as an estimate for spectral intensity of 
the EEG within this frequency band. The SBI values are then 
plotted against time at centers of consecutive windows to form 
the SBI curve (Figure 2).

2.10 | Event selector
To find the times of high electrical EEG activity suggestive 
of seizures within the frequency band of interest, we define a 

threshold value of the SBI. This threshold allows filtering back-
ground EEG signal and interictal activity from the seizures. 
The automatic threshold definition is based on building a dis-
tribution histogram of SBI values over the entire recording time 
(Data S1). Assuming that the total duration of ictal events is 
only a small fraction of overall duration of the recording, the 
region of the histogram with the highest density of distribu-
tion will indicate the interictal SBI value range. By setting the 
threshold above this range, we will cut off the “ordinary” values 
of the SBI and leave only the seizure events (Figure S1).

After the threshold is defined, all episodes of the EEG for 
which the SBI is above the threshold are separated in a list of 
events that also specifies their start and end times.

If multiple channels are analyzed, the algorithm groups 
the overlapping events from different channels, so they can 
be counted as one event. The start and end times of the se-
lected events are roughly determined as the points where the 
SBI curve crosses the threshold (Figure S1). The precision of 
defining the starts and ends in this way is equal to the size of 
the time window. However, the software allows the user to 
redefine the start and end times of selected events manually, 
simply moving special cursors to desired positions on the 
EEG. The Assyst software is able to show the signal of sin-
gle or multiple channels to provide the user a more efficient 
review of the events.

F I G U R E  2  Diagram showing calculation of spectral band index 
(SBI) curve. A, Fragment of electroencephalogram (EEG) and the 
current position of running time window. B, The Fourier transform and 
the power spectrum of EEG segment from this window are calculated 
using the Similar Basis Function algorithm, for the frequency range  
[f1, f2]. The maximum value of the power spectrum in this range is the 
SBI of the current window. C, The SBIs of consecutive time windows 
are then plotted against time and form the SBI curve

F I G U R E  1  Block diagram of the algorithm. Shaded blocks 
indicate main steps; white blocks indicate optional steps. The blocks 
on the left side indicate operations performed by the user, and 
blocks on the right side those performed by the computer. EEG, 
electroencephalogram; SBI, spectral band index
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2.11 | Artifact removal and user 
inspection of selected events
An optional automatic artifact removal procedure in our 
method identifies and eliminates false-positives (FPs) that 
were caused by strong artifacts. It is performed after the 
threshold- based event selection. The procedure examines the 
selected events for the presence of sharp artifacts by analyz-
ing the signal's derivative and finding the pieces of EEG with 
sharp and large deflections in amplitude (Data S3).

The final stage of processing requires the input from the 
user. At this stage, the user visually examines the selected 
events by reviewing the EEG either to confirm them as elec-
trographic seizures or reject them as false detections.

2.12 | Comparison of Assyst and 
manual seizure detection and algorithm 
performance assessment
All of the EEG recordings were manually analyzed as de-
scribed previously by two blinded experts. Assyst software 
was used to analyze the same EEG recordings and the re-
sults obtained by Assyst were confirmed by two independent 
blinded reviewers. The total number of EEG seizures detected 
by each method and the time to review each file were ana-
lyzed. The main criterion for the algorithm performance as-
sessment was the percentage of real seizures detected by the 
algorithm during the automatic event detection (sensitivity).

The second criterion was the comparison of total time 
spent for the analysis of 1 day (24 hours) of recording using 
the Assyst software.

3 |  RESULTS

3.1 | Automated seizure detection
The method was applied for offline EEG seizure detection 
from long- term EEG recordings from post- SE, PTE, GAERS, 
and WAG/Rij models. We processed recordings from 179 rats 
that were representatives of four different rat models of epi-
lepsy. The EEG recordings contained in total 10 600 seizures, 
which represents >76 000 hours of EEG recordings (Table 1). 
The average duration of records from post- SE and PTE ani-
mals was 24.6 days. The records from GAERS and WAG/Rij 
animals were shorter and averaged 24.2 hours (±3.4 hours).

For post- SE (n = 119 rats, n = 993 seizures, 2.8 seizures 
per week) and PTE (n = 5 rats, n = 49 seizures, 28 seizures 
per week), the EEG seizure detection was performed using 
the following sets of parameters. The running window size 
was 10 seconds, the window step was 5 seconds, and the fre-
quency band was from 20 to 23 Hz.

For GAERS (n = 41, n = 8733 seizures) and WAG/Rij 
(n = 14 rats, n = 825 seizures), the parameters for automated T
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seizure detection were slightly different. We used shorter 
windows, 2- 5 seconds for GAERS and 5 seconds for WAG/
Rij, to reliably detect the shorter SWD of these genetically 
inbred species. The window step was equal to half of the win-
dow size. Also, the EEG seizures in both the GAERS and 
WAG/Rij rats showed slightly higher variability in the fre-
quency of the component we were focusing on (Figure S2), 
and thus a wider frequency band of 17- 25 Hz was used in the 
SBI calculation.

Examples of electrographic seizures in post- SE, PTE, 
GAERS, and WAG/Rij models are shown in Figure 3. Note 
that the average discharge frequency (the repetition rate of 
spikes) significantly differs between the models: 6 Hz for 
post- SE, 2.4 Hz for PTE, 7.3 Hz for GAERS, and 9 Hz for 
WAG/Rij. Meanwhile, the waveforms of individual spike 
waves from different rat models (Figure 3B) have simi-
lar structure and temporal dynamics. Due to this tempo-
ral similarity, they also have similar amplitude- frequency 
characteristics, with a single peak in the range 17- 25 Hz 
(Figure S2).

Figure 4 illustrates the specificity of the 17-  to 25- Hz fre-
quency component to EEG seizures. This narrow band shows 
a significant difference between SBI values corresponding to 
ictal events and those corresponding to background interic-
tal activity. It is important to note that the smallest ictal SBI 

value is >10 times larger than the largest interictal SBI value, 
which provides a very safe margin for threshold to detect 
seizures.

In Data S2, we compare and discuss the SBI curves calcu-
lated for the same recording for wide and narrow frequency 
bands (Figure S3).

3.2 | Artifact removal
The majority of analyzed records contained artifacts. The 
optional procedure for automatic identification and removal 
of detections caused by artifacts was performed after the ini-
tial threshold- based event selection. A conservative removal 
algorithm was applied to avoid erroneous removal of ictal 
events (Data S3 and Figures S4-S5).

It is important to note that the number of true seizures 
detected with our algorithm does not depend on the use of the 
artifact removal tool. Rather, the artifact removal reduces the 
FP rate and the time it takes to manually review the selected 
events. In all of the post- SE and PTE recordings, the auto-
matic artifact removal procedure removed on average 38.5% 
of the artifacts that were initially selected by the algorithm.

In post- SE and PTE EEG recordings that did not contain 
artifacts (n = 7) or contained a few (Figures 4 and S3), the 
number of FPs was zero. In these cases, the specificity of 
the algorithm with or without the use of the artifact removal 
procedure was 100%.

The EEG recordings from GAERS and WAG/Rij rats con-
tained only a minimal number of artifacts, and the artifact 
removal procedure was not used.

F I G U R E  3  A, Examples of electrographic seizures (10- second 
fragments) from four rat models. B, One hundred fifty–millisecond 
fragments of traces in A showing single spike waves (marked by 
asterisk in corresponding trace in A). GAERS, Genetic Absence 
Epilepsy Rats from Strasbourg; PTE, posttraumatic epilepsy; SE, status 
epilepticus; TBI, traumatic brain injury; WAG/Rij, Wistar Albino 
Glaxo from Rijswijk

F I G U R E  4  Narrowband seizure detection. Upper trace shows 
the spectral band index (SBI) curve calculated for a 12- day (288 hours) 
electroencephalographic recording from a post–status epilepticus rat 
that had four seizures during the recording period. The bottom traces 
show zoomed fragments of the SBI curve corresponding to the first 
and second seizures that have the smallest and the largest SBI values, 
correspondingly, among all ictal events, and the interictal event with 
the largest SBI value. The SBI peak values are in relative units
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3.3 | Algorithm performance assessment
We assessed the algorithm performance using two criteria: 
sensitivity (the percentage of real seizures detected by the 
algorithm) and time- saving compared to manual seizure 
screening.

For all analyzed records, the comparison of the EEG 
seizures detected with the use of Assyst software with the 
previous manual scores made by experts did not reveal any 
missed seizures (0 false-negatives), that is, the program de-
tected 100% of EEG seizures in all records. This was verified 
afterward by two independent experts (Table 1). Moreover, 
it was revealed that four seizures in the post- SE animals and 
six seizures in PTE animals were not annotated in the manual 
analysis. The FP rate was not affected by the duration of the 
EEG recordings.

Assyst significantly reduced the time to screen for sei-
zures in EEG recordings. The longest time spent by process-
ing a single channel EEG recording of one animal was about 
5 minutes per 1 day of record, with an average of 1 minute per 
24 hours of EEG recordings (Table 2). For post- SE and PTE 
recordings that contained minimal artifacts, the processing 
took about 6- 10 seconds per day of recording. As expected, 
longer inspection time was required for GAERS and WAG/
Rij records, as each record contained hundreds of seizures per 
24 hours of EEG recordings.

In contrast, an experienced investigator spends 40- 90 min-
utes for manual seizure screening through 1 day of EEG re-
cordings. Comparing our average Assyst processing time 
with the manual seizure screening, the time needed to screen 
for seizures in any given set of EEG recordings was reduced 
by 60 times, which represents saving 90%- 98% of the time 
needed by the reviewer when using the Assyst.

4 |  DISCUSSION

We present an effective and efficient automated algorithm 
that has high sensitivity, detecting all of the seizures in differ-
ent chronic animal models of genetic and acquired epilepsy 
in this study, and high specificity, with only a small, accepta-
ble, number of FP seizure identifications. The Assyst method 

was applied for offline seizure detection from long- term EEG 
recordings from four spontaneously seizing, chronic epileptic 
rat models: the post- SE model of acquired epilepsy, the FPI 
model of PTE, and two genetic models of absence epilepsy, 
GAERS and WAG/Rij.

Seizure detection algorithms have been described in 
the literature,23,24 most of which are aimed at human EEG 
analysis; very few are designed particularly for rodents.25–34 
However, no method has been described to detect all of the 
seizures in different animal models.

The method presented here belongs to the class of univar-
iate time- frequency analysis- based methods. The novelty is 
in the definition and in the way of calculation of the discrim-
inative feature used—the SBI, which is calculated for a nar-
row frequency band and is used to assess the spectral content 
of the EEG to distinguish the EEG seizures from interictal 
activity.

We found that the ictal EEG in the examined rat mod-
els contains a strong component in the frequency range from 
17 to 25 Hz. This novel finding was critical to determine the 
choice for the discriminative feature of EEG seizures and en-
sured an effective performance of the algorithm. We found 
that this peculiarity comes from the frequency composition 
of single discharges, or individual spike and wave complexes 
within the seizures in these animals (Data S2, Figure S2). 
Importantly, this frequency band component is not present 
anywhere else in the interictal EEG. This is reflected in that 
the power spectrum of the EEG (and the SBI) has much 
stronger values in this frequency range during the seizures 
than at any time between seizures (Figure 4).

Another key factor for the algorithm's performance was 
the accuracy of calculation of the power spectrum achieved 
by using our previously described SBF algorithm for numer-
ical calculations of Fourier transforms.22 Numerical estima-
tion of Fourier transforms is usually based on procedures 
employing various algorithms of the fast Fourier transform 
(FFT).35 The latter is supported by a Fourier series model 
of the data, that is, the addressees are periodic signals. This 
distinction with the Fourier integrals is a troublesome prob-
lem when functions of short duration, like EEG fragments 
extracted by employed windows, are transformed from the 
time to frequency domain. The major concern is the spectral 
leakage, which may cause significant distortions of the fre-
quency domain characteristics. The remedies of windowing 
and zero- padding usually introduce problems of their own. 
By contrast to the FFT, the SBF algorithm is an original ver-
sion of Filon- type methods that provide maximum precision 
in the estimation of trigonometric integrals using interpola-
tion polynomials of different degrees. Removal of spectral 
leakage provides a means to calculate the power spectrum 
with high resolution and remarkable accuracy.

In this study, we used a modified SBF algorithm opti-
mized for calculation of uniformly sampled input signal, 

T A B L E  2  Processing times of 24 hours of EEG recordings

Processing time per 1 day of 
EEG recordings Minutes

Assyst Max 5

Min 0.1

Average 1

Manuala 40- 90

EEG, electroencephalographic.
aApproximate time spent by expert for visual examination of 1 day of EEG 
recordings. 
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which is the case for EEG recordings. This optimization 
made the algorithm significantly faster and comparable in 
speed with the FFT.

Current implementation of the algorithm is not devoted 
to real- time EEG processing because the threshold is de-
fined on the basis of the entire record. Implementation of 
some offline procedures was necessary to get the most ac-
curate (for each particular recording) statistical estimate for 
the baseline SBI values. Using these results, we are cur-
rently working on the online version of the algorithm, where 
the threshold will be defined dynamically based on the past 
values of SBI.

The majority of our records contained artifacts, both of 
physiological and nonphysiological (instrumental) nature. 
Most physiological artifacts did not have strong components 
in the analyzed frequency band, and thus were rarely detected 
by the algorithm, with the exception of strong electrocardio-
graphic or chewing artifacts (Figure S4A,B). In contrast, the 
nonphysiological artifacts were sometimes detected as events 
of interest because they mostly contain sharp and large am-
plitude signal that has strong spectral power within a wide 
frequency diapason including the 17-  to 25- Hz band (Figure 
S4C-F).

A variety of artifact detection and removal methods of 
different complexity are described in literature, although 
no single existing artifact detection method is universal. 
Importantly, there is no method designed specifically for 
single- channel recordings in rodents.36,37

When artifact identification is applied in a seizure detec-
tion algorithm, there is a high risk of erroneously identifying a 
seizure as an artifact, especially if the seizure is contaminated 
by artifacts, as occurs normally in chronic EEG recordings 
and we observed several times in our recordings.38 Therefore, 
we decided to use a reliable and conservative procedure for 
artifact identification. This procedure did not erroneously re-
move any seizure in the studied records, and further reduced 
the user's inspection time on average by about 40%.

False-negatives are the most critical component for a re-
liable automated seizure detection method. One missed sei-
zure during the automated detection would require a manual 
inspection of the entirety of the EEG recording file.

In our case, the sensitivity was 100% (ie, zero false- 
negatives) in all records from all four epilepsy rat models. 
Specificity, which is determined by the number of FPs, sig-
nificantly depended on the quality of recording. In recordings 
with a reduced number of artifacts, the number of FPs was 
zero, giving specificity of 100%.

In records containing a large number of artifacts even 
after application of an artifact removal procedure, the num-
ber of FPs remaining for visual inspection was relatively 
high (ranging from 0 to 193/d, on average 32/d, or 1.3/h), 
which is comparable to what has been described in the 
literature.38,39

Overall, we have shown a reliable automated tool that pro-
vides high sensitivity, detecting 100% of the EEG seizures 
in different animal models of genetic and acquired epilepsy. 
Our Assyst is versatile and a significantly time- saving sei-
zure detection program, which can facilitate high- throughput 
studies. Moreover, it provides remarkable flexibility in pro-
cessing depending on particular data and user needs, from 
automatic with minimum influence from the user to a semi-
automated inspection of every peak, large or small. Moreover, 
the software provides flexibility to advanced users to search 
for epileptiform events with smaller duration and amplitude 
or when dealing with new or uncharacterized models. The 
Assyst algorithm has the potential to improve the efficiency 
and rigor of preclinical research and therapy development 
using these models.

ACKNOWLEDGMENTS

We thank Prof Gilles van Luijtelaar (Radboud University 
Nijmegen, the Netherlands) for kindly providing the WAG/
Rij rat data.

DISCLOSURE

None of the authors has any conflict of interest to disclose. 
We confirm that we have read the Journal's position on issues 
involved in ethical publication and affirm that this report is 
consistent with those guidelines.

REFERENCES

 1. Galanopoulou AS, Buckmaster PS, Staley KJ, et al. Identification 
of new epilepsy treatments: issues in preclinical methodology. 
Epilepsia. 2012;53:571–82.

 2. Barker Haliski M, Friedman D, French J, et al. Disease modifi-
cation in epilepsy: from animal models to clinical applications. 
Drugs. 2015;75:749–67.

 3. Galanopoulou A, Mowrey W. Not all that glitters is gold: a guide to 
critical appraisal of animal drug trials in epilepsy. Epilepsia Open. 
2016;1:86–101.

 4. Coenen AM, Drinkenburg WH, Inoue M, et al. Genetic models 
of absence epilepsy, with emphasis on the WAG/Rij strain of rats. 
Epilepsy Res. 1992;12:75–86.

 5. Marescaux C, Vergnes M, Depaulis A. Genetic absence epi-
lepsy in rats from Strasbourg—a review. J Neural Transm Suppl. 
1992;35:37–69.

 6. Morimoto K, Fahnestock M, Racine RJ. Kindling and status ep-
ilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 
2004;73:1–60.

 7. Galanopoulou AS, Simonato M, French JA, et al. Joint AES/ILAE 
translational workshop to optimize preclinical epilepsy research. 
Epilepsia. 2013;54(Suppl 4):1–2.

 8. Liu S-J, Zheng P, Wright D, et al. Sodium selenate retards epi-
leptogenesis in acquired epilepsy models reversing changes in 
protein phosphatase 2A and hyperphosphorylated tau. Brain. 
2016;139:1919–38.



   | 791CASILLAS- ESPINOSA Et AL.

 9. Kadam S, D'Ambrosio R, Duveau V, et al. Methodological stan-
dards and interpretation of video- electroencephalography in 
adult control rodents. A TASK1- WG1 report of the AES/ILAE 
translational Task Force of the ILAE. Epilepsia. 2017;58(Suppl 
4):10–27.

 10. Bhandare A, Kapoor K, Powell K, et al. Inhibition of microglial 
activation with minocycline at the intrathecal level attenuates 
sympathoexcitatory and proarrhythmogenic changes in rats with 
chronic temporal lobe epilepsy. Neuroscience. 2017;350:23–38.

 11. Racine RJ. Modification of seizure activity by electrical stim-
ulation: I. After- discharge threshold. Electroencephalogr Clin 
Neurophysiol. 1972;32:269–79.

 12. Racine RJ. Modification of seizure activity by electrical stimu-
lation II. Motor seizure. Electroencephalogr Clin Neurophysiol. 
1972;32:281–94.

 13. Shultz SR, Wright DK, Zheng P, et al. Sodium selenate reduces 
hyperphosphorylated tau and improves outcomes after traumatic 
brain injury. Brain. 2015;138:1297–313.

 14. Kharatishvili I, Nissinen JP, McIntosh TK, et al. A model of post-
traumatic epilepsy induced by lateral fluid- percussion brain injury 
in rats. Neuroscience. 2006;140:685–97.

 15. Shultz SR, Cardamone L, Liu YR, et al. Can structural or func-
tional changes following traumatic brain injury in the rat predict 
epileptic outcome? Epilepsia. 2013;54:1240–50.

 16. Brady R, Casillas Espinosa P, Agoston D, et al. Modelling trau-
matic brain injury and posttraumatic epilepsy in rodents. Neurobiol 
Dis. 2018;123:8–19.

 17. Casillas Espinosa P, Powell K, Zhu M, et al. Evaluating whole 
genome sequence data from the Genetic Absence Epilepsy Rat 
from Strasbourg and its related non- epileptic strain. PLoS One. 
2017;12:e0179924.

 18. Van Nieuwenhuyse B, Raedt R, Sprengers M, et al. The systemic 
kainic acid rat model of temporal lobe epilepsy: long- term EEG 
monitoring. Brain Res. 2015;1627:1–11.

 19. Pitkänen A, Kharatishvili I, Narkilahti S, et al. Administration of 
diazepam during status epilepticus reduces development and sever-
ity of epilepsy in rat. Epilepsy Res. 2005;63:27–42.

 20. Powell KL, Cain SM, Ng C, et al. A Cav3.2 T- type calcium channel 
point mutation has splice- variant- specific effects on function and 
segregates with seizure expression in a polygenic rat model of ab-
sence epilepsy. J Neurosci. 2009;29:371–80.

 21. Drinkenburg WH, Coenen AM, Vossen JM, et al. Spike- wave 
discharges and sleep- wake states in rats with absence epilepsy. 
Epilepsy Res. 1991;9:218–24.

 22. Melkonian D. Similar basis function algorithm for numer-
ical estimation of Fourier integrals. Numer Algorithms. 
2010;54:73–100.

 23. Koren J, Herta J, Fürbass F, et al. Automated long- term EEG 
review: fast and precise analysis in critical care patients. Front 
Neurol. 2018;9:454.

 24. Ulate Campos A, Coughlin F, Gaínza Lein M, et al. Automated 
seizure detection systems and their effectiveness for each type of 
seizure. Seizure. 2016;40:88–101.

 25. Xanthopoulos P, Liu C-C, Zhang J, et al. A robust spike and wave 
algorithm for detecting seizures in a genetic absence seizure model. 
Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2184–7.

 26. van Luijtelaar G, Lüttjohann A, Makarov V, et al. Methods of au-
tomated absence seizure detection, interference by stimulation, and 

possibilities for prediction in genetic absence models. J Neurosci 
Methods. 2016;260:144–58.

 27. Ovchinnikov A, Lüttjohann A, Hramov A, et al. An algorithm for 
real- time detection of spike- wave discharges in rodents. J Neurosci 
Methods. 2010;194:172–8.

 28. Aghazadeh R, Shahabi P, Frounchi J, et al. An autonomous real- 
time single- channel detection of absence seizures in WAG/Rij rats. 
Gen Physiol Biophys. 2015;34:285–91.

 29. Van Hese P, Martens JP, Boon P, et al. Detection of spike and wave 
discharges in the cortical EEG of genetic absence epilepsy rats 
from Strasbourg. Phys Med Biol. 2003;48:1685–700.

 30. Richard CD, Tanenbaum A, Audit B, et al. SWDreader: a wavelet- 
based algorithm using spectral phase to characterize spike- wave 
morphological variation in genetic models of absence epilepsy. J 
Neurosci Methods. 2015;242:127–40.

 31. White A, Williams P, Hellier J, et al. EEG spike activity pre-
cedes epilepsy after kainate- induced status epilepticus. Epilepsia. 
2010;51:371–83.

 32. Niknazar M, Mousavi SR, Motaghi S, et al. A unified approach for 
detection of induced epileptic seizures in rats using ECoG signals. 
Epilepsy Behav. 2013;27:355–64.

 33. Lee J, Park J, Yang S, et al. Early seizure detection by applying 
frequency- based algorithm derived from the principal component 
analysis. Front Neuroinform. 2017;11:52.

 34. Dheer P, Chaitanya G, Pizarro D, et al. Seizure detection and 
network dynamics of generalized convulsive seizures: towards 
rational designing of closed- loop neuromodulation. Neurosci J. 
2017;2017:9606213.

 35. Rao KR, Kim DN, Hwang JJ. Fast Fourier transform: algorithms 
and applications. Dordrecht, the Netherlands and Heidelberg, 
Germany: Springer; 2010.

 36. Islam M, Rastegarnia A, Yang Z. Methods for artifact detec-
tion and removal from scalp EEG: a review. Neurophysiol Clin. 
2016;46:287–305.

 37. Islam M, Rastegarnia A, Yang Z. A wavelet- based artifact reduc-
tion from scalp EEG for epileptic seizure detection. IEEE J Biomed 
Health Inform. 2016;20:1321–32.

 38. White A, Williams P, Ferraro D, et al. Efficient unsupervised algo-
rithms for the detection of seizures in continuous EEG recordings 
from rats after brain injury. J Neurosci Methods. 2006;152:255–66.

 39. Andrade P, Paananen T, Ciszek R, et al. Algorithm for automatic 
detection of spontaneous seizures in rats with post- traumatic epi-
lepsy. J Neurosci Methods. 2018;307:37–45.

SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.   

How to cite this article: Casillas-Espinosa PM, 
Sargsyan A, Melkonian D, O'Brien TJ. A universal 
automated tool for reliable detection of seizures in 
rodent models of acquired and genetic epilepsy. 
Epilepsia. 2019;60:783–791. https://doi.org/10.1111/
epi.14691

https://doi.org/10.1111/epi.14691
https://doi.org/10.1111/epi.14691

